The generator matrix 1 0 0 0 0 1 1 1 0 1 1 X^2 0 0 1 1 X X^2+X X^2+X X^2 1 1 1 1 X^2 1 X^2+X 1 1 X 1 1 X 1 X^2 1 1 0 1 0 0 0 0 0 X^2 X^2 X^2 X^2 0 X X X X^2 1 1 1 1 X^2+X+1 X^2+1 X^2+X+1 X+1 1 X^2+1 X^2+X X^2+1 X^2+X+1 X X^2 X+1 X^2+X X+1 X X^2+1 X^2+X 0 0 1 0 0 X^2 1 X^2+1 1 1 X 1 1 X^2 X^2+X+1 X^2 X+1 X^2 X X^2+X+1 X^2 X X^2+X X+1 X^2+1 X^2+1 X^2 X^2+X+1 0 1 X^2+X+1 X X^2+X 0 1 X^2+X+1 X^2+X 0 0 0 1 0 X^2+1 1 0 1 X+1 X^2 X^2+X+1 X^2 1 X^2 1 0 X^2+X X+1 X+1 X+1 X^2+1 X^2+X X^2+X 1 X+1 X X^2 X+1 X X+1 X^2+1 X X^2+X X^2+X 1 0 0 0 0 0 1 1 X^2 1 1 X^2+X+1 X+1 X^2+X X^2+1 X^2+X+1 0 X^2+X 1 X^2+1 X 1 X^2+X X^2+1 X^2+X+1 1 X^2 0 1 X X^2 0 X^2+1 1 1 X^2+X+1 0 X+1 X generates a code of length 37 over Z2[X]/(X^3) who´s minimum homogenous weight is 30. Homogenous weight enumerator: w(x)=1x^0+378x^30+796x^31+1295x^32+1840x^33+2748x^34+3292x^35+3667x^36+4372x^37+3952x^38+3564x^39+2773x^40+1864x^41+1200x^42+564x^43+287x^44+84x^45+70x^46+8x^47+7x^48+4x^50+2x^52 The gray image is a linear code over GF(2) with n=148, k=15 and d=60. This code was found by Heurico 1.16 in 64 seconds.